
Modeling and Control of 2-DOF Robot Arm

Submitted in fullfillment of the requirements for the course

Introduction to Robotics

Submitted by:

Devin Yeung
Under the guidance of
Prof. Qingguo WANG

December 26, 2023

1

Abstract

This thesis delve into the control aspects of a two-degree-of-freedom robotic arm, focusing on PID
control, kinematics, dynamics, and the design and implementation of controllers. The robot’s
parameters and key equations for forward and inverse kinematics are defined, followed by a
detailed exploration of the dynamic model. The PID controller is introduced for torque control,
with parameters tuned through simulations. Additionally, a Fuzzy Logic Controller is proposed
as an alternative to PID, addressing challenges such as manual tuning complexity and system
variability. The study provides valuable insights into the control of robotic arms, showcasing
simulations and practical applications.

Keywords: 2-DOF, robotic arms, kinematics, dynamics, PID, fuzzy logic

Contents

1. Robot Specification 1

2. Kinematics 1

3. Dynamics 3

4. Controller Design 5

5. Fuzzy Logic Control 8

A. Matlab Simulation 10
A.1. Dynamics . 10
A.2. PID control . 10

1. Robot Specification

We define a two degree of freedom robotic arm in Figure 1

l1

θ1

l2
θ2

(x1, y1)

(x2, y2)

Figure 1: A 2-DOF robot arm

with the key parameters defined in Table 1

Parameter Symbol
Length of the first link l1

Length of the second link l2

Mass of the first link m1

Mass of the second link m2

Rotation angle of the first link θ1

Rotation angle of the second link θ2

Table 1: Key parameters of the 2-DOF robot arm

2. Kinematics

Forward kinematics

The first thing to do is to define a suitable home configuration, in this case we set all joint angles
to zero (θ1 = θ2 = 0), which is shown in Figure 2, then we perform following two rotations.

l1 l2

(x1, y1) (x2, y2)

Figure 2: A 2-DOF robot arm at home position

First rotate joint 2 to θ2 as shown in Figure 3.

1

l1

l2

θ2

(x1, y1)

(x2, y2)

Figure 3: A 2-DOF robot arm at home configuration

Since the center of the rotation is (x1, y1), the rotation matrix is given in Equation (1)

A2(θ2) =

cos (θ2) − sin (θ2) (1− cos θ2)l1

sin (θ2) cos (θ2) −l1 sin θ2

0 0 1

 (1)

Then we rotate the joint 1, which is similar to what we have done previously:

A1(θ1) =

cos (θ1) − sin (θ1) 0

sin (θ1) cos (θ1) 0

0 0 1

 (2)

By applying Equation (2) and Equation (1) respectively, the overall kinematic transformation
matrix of the manipulator can be represented as:

K(θ1, θ2) = A1(θ1)A2(θ2)

=

cos (θ1 + θ2) − sin (θ1 + θ2) −l1 (cos (θ1 + θ2)− cos (θ1))

sin (θ1 + θ2) cos (θ1 + θ2) −l1 (sin (θ1 + θ2)− sin (θ1))

0 0 1

 (3)

To find the position of any point attached to the end-effector, we simply multiply its position
vector in the home position by Equation (3):x2

y2

1

 =

cos (θ1 + θ2) − sin (θ1 + θ2) −l1 (cos (θ1 + θ2)− cos (θ1))

sin (θ1 + θ2) cos (θ1 + θ2) −l1 (sin (θ1 + θ2)− sin (θ1))

0 0 1


l1 + l2

0

1



=

l2 cos (θ1 + θ2) + l1 cos (θ1)

l2 sin (θ1 + θ2) + l1 sin (θ1)

1


(4)

The kinematic equations of the manipulator can be derived from the Equation (4):

x2 = l2 cos (θ1 + θ2) + l1 cos (θ1)

y2 = l2 sin (θ1 + θ2) + l1 sin (θ1)
(5)

2

Inverse Kinematics

In inverse kinematics, the position of end effector (x2, y2) is known. We need to calculate the
angle θ1, θ2 of each joint. First we determine the angle α, which is the angle between the end
effector and the x-axis:

α = tan−1 y2
x2

(6)

Applying the law of cosines to the elbow angle β, which is the angle between link 1 and link 2,
which yields

l21 + l22 − 2l1l2 cosβ = r2 (7)

where r2 = x21 + y21, which yields:

θ2 = π − β = π − cos−1 l
2
1 + l22 − x22 − y22

2l1l2
(8)

Similarly
r2 + l2 − 2rl1 cos γ = l22 (9)

which yields

θ1 = α− γ = tan−1 y2
x2

− cos−1 x
2
2 + y22 + l21 − l22
2l1
√
x22 + y22

(10)

Since we have two possible configurations, elbow up and down, which is shown in Figure 4, we
obtain:

θ′1 = θ1 + 2γ

θ′2 = −θ2
(11)

l1

θ1

l2
θ2

(x1, y1)

(x2, y2)

l1

θ1

l2θ2

(x1, y1)

(x2, y2)

Figure 4: Two possible cases for 2-DOF robot arm inverse kinematics

3. Dynamics

Before we construct the dynamic model, following assumptions are made to simplify the model:

1. The actuators dynamics (motor and gear boxes) is not taken into account.

2. The effect of friction forces is assumed to be negligible

3

3. The mass of each link is assumed to be concentrated at the end of each link.

The dynamic model of a robot is concerned with the movement and the forces involved in the
robot arm. We use Euler-Lagrangian method shown in Equation (12) to obtain the equation of
motion.

F =
d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
(12)

where F is the external force, L is the Lagrangian equation of the system, which is given in
Equation (13)

L(θ, θ̇) = KE − PE (13)

To solve Lagrangian Equation (13), we need to calculate the kinematic energy KE and the
potential energy PE respectively:

KE =
1

2

(
m1v1

2 +m2v2
2
)

PE = m1gy1 +m2gy2

(14)

The velocity of bob can be obtained by combining the transverse and longitudinal component
velocities:

v2i = ẋi
2 + ẏi

2 i = 1, 2 (15)

The position of mass is given by Equation (16), since we already assume that the weight of
robotic arms is concentrated at the end of each robotic arm.

x1 = l1 cos(θ1)

y1 = l1 sin(θ1)

x2 = l2 cos (θ1 + θ2) + l1 cos (θ1)

y2 = l2 sin (θ1 + θ2) + l1 sin (θ1)

(16)

By substituting Equation (16) and Equation (15) into Equation (14), we obtain:

KE =
θ̇2

2
l2

2m2

2
+

θ̇1
2
l1

2m1

2
+

θ̇1
2
l1

2m2

2
+

θ̇1
2
l2

2m2

2

+ θ̇2θ̇1l2
2m2 + θ̇1

2
l1l2m2 cos (θ2) + θ̇2θ̇1l1l2m2 cos (θ2)

(17)

PE = m2g (l2 sin (θ1 + θ2) + l1 sin θ1) +m1gl1 sin θ1 (18)

Then we obtain

Fθ1 = θ̈2l2
2m2 + θ̈1l1

2m1 + θ̈1l1
2m2 + θ̈1l2

2m2

+ gl2m2 cos (θ1 + θ2) + gl1m1 cos (θ1) + gl1m2 cos (θ1)

− θ̇2
2
l1l2m2 sin (θ2) + θ̈2l1l2m2 cos (θ2) + 2θ̈1l1l2m2 cos (θ2)− 2θ̇2θ̇1l1l2m2 sin (θ2)

(19)

4

we rewrite the Equation (19) in the form of:

Fθ1 = ((m1 +m2)l
2
1 +m2l22 + 2m2l1l2 cos θ2)θ̈1

+ (m2l
2
2 +m2l1l2 cos θ2)θ̈2 −m2l1l2 sin θ2(2θ̇1θ̇2 + θ̇2

2
)

+ (m1 +m2)gl1 cos θ1 +m2gl2 cos(θ1 + θ2)

(20)

Similarly we can obtain Fθ2

Fθ2 = θ̈2l2
2m2 + θ̈1l2

2m2 + gl2m2 cos (θ1 + θ2) + θ̇2
2
l1l2m2 sin (θ2) + θ̈1l1l2m2 cos (θ2)

= (m2l
2
2 +m2l1l2 cos θ2)θ̈1 +m2l

2
2θ̈2 +m2l1l2 sin(θ2)θ̇2

2
+m2gl2 cos (θ1 + θ2)

(21)

We can gather terms together into an equation of the form

F = M(θ)θ̈ + c(θ, θ̇) + g(θ) (22)

with

M(θ) =

(
m1l

2
1 +m2(l

2
1 + 2l1l2 cos θ2 + l22) m2(l1l2 cos θ2 + l22)

m2(l1l2 cos θ2 + l22) m2l
2
2

)
(23)

c(θ1, θ̇) =

(
−m2l1l2 sin θ2(2θ̇1θ̇2 + θ̈2)

m2l2l2θ̇1
2
sin θ2

)
(24)

g(θ) =

(
(m1 +m2)l1g cos θ1 +m2gl2 cos(θ1 + θ2)

m2gl2 cos(θ1 + θ2)

)
(25)

4. Controller Design

The input variable F in Equation (22) represents the torque applied to the robot, which is
unknown. So it required a control in the force applied of the joints to reach the final state. For
this particular case, we design two PID controls since the first arm motion is dependent from
the second arm. (In fact, they still have a strong interactive) The PID law can written as:

F = KP e+KDė+KI

∫
e dt (26)

where KP ,KI ,KD are proportional, integral and derivates gain of the PID controller, respec-
tively, and e is the error term, given by:

e = θd − θ (27)

θd =

(
θd1
θd2

)
is the desired joint angle. The close-loop equation is obtained by substituting

Equation (26) into Equation (22):

M(θ)θ̈ + c(θ, θ̇) + g(θ) = KP e+KDė+KI

∫
e dt (28)

5

then we have
θ̈ = M(θ)−1(−c(θ, θ̇)− g(θ)) + F̂ (29)

with
F̂ = M(θ)−1F (30)

So, we decouple the system to have a new input

F̂ =

(
f1

f2

)
(31)

The error signals of the system are
e(θ1) = θ1f − θ1

e(θ2) = θ2f − θ2
(32)

where θf is the final position. In our simulation, we set the initial position to:

θ0 =

(
−π

2
π
2

)
(33)

and the final position to: (
θ1f

θ2f

)
=

(
π
2

−π
2

)
(34)

So the complete system equations can be written in the form of:

θ̈ = M(θ)−1(−c(θ, θ̇)− g(θ)) + F̂ (35)

with

F̂ =

(
KP1(θ1f − θ1)−KD1 θ̇1 +Ki1

∫
e(θ1) dt

KP2(θ2f − θ2)−KD2 θ̇2 +Ki2

∫
e(θ2) dt

)
(36)

We do the simulation base on the previous defined model in MATLAB with the configuration in
Table 2, the source code for replication can be found in Listing 2

Parameter Value Parameter Value
m1 1.0 m2 1.0

l1 1.0 l2 1.0

initial θ1 −π
2 initial θ2 π

2

final θ1 π
2 final θ2 −π

2

Table 2: Configuration in the PID controller simulation

After tuning by trial and error we got with the PID controller parameters in Table 3:

6

Parameter Value Parameter Value
KP1 40 KP2 20

KI1 7 KI2 7

KD1 10 KD2 10

Table 3: Key parameters of the PID controller

The simulation results are shown in Figure 5 and Figure 6 respectively.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-50

0

50

100

150

200

Jo
in
tA
ng
le
s
(d
eg
re
es
)

Joint Angles Error Over Time

1

Figure 5: Joint 1 Angles Error Over Time

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-200

-150

-100

-50

0

50

Jo
in
tA
ng
le
s
(d
eg
re
es
)

Joint Angles Error Over Time

2

Figure 6: Joint 2 Angles Error Over Time

7

5. Fuzzy Logic Control

PID controllers, while widely used and effective in many applications, have some disadvantages
related to tuning.

1. Manual Tuning Complexity: Tuning PID parameters manually can be a complex and time-
consuming task.

2. System Variability: PID parameters that work well under one set of operating conditions
may not be optimal for different conditions. System changes, such as variations in load or
environmental conditions, can necessitate retuning.

Fuzzy control is a control technique that belongs to the expert systems and that allows for
controlling dynamic systems without any mathematical model. This characteristic makes fuzzy
control suitable for complex processes that are difficult to model analytically. The block diagram
shown in Figure 7 represents the general structure of a fuzzy logic controller.

Figure 7: Fuzzy Logic Controller

This controller has three main components:

1. Fuzzification: Transforms input elements into membership degrees for linguistic terms in
fuzzy sets, indicating the extent to which elements belong to each set.

2. Inference Engine: Makes decisions based on input data’s membership degrees in fuzzy sets,
using rules from the knowledge base. Outputs fuzzy sets calculated by the controller.

3. Defuzzification: Converts fuzzy values from the inference into useful values for the con-
trolled process.

Fuzzy logic offers advantages in controlling a two-degree-of-freedom manipulator by providing
adaptability to nonlinearities, robustness to varying conditions, and simplified tuning through
a rule-based approach. Unlike PID controllers, fuzzy logic excels in handling complex and dy-
namic systems, allowing for effective control and improved performance under diverse operating
conditions.

8

References

[1] N. M. Ghaleb and A. A. Aly. “Modeling and control of 2-DOF robot arm”. In: International
Journal of Emerging Engineering Research and Technology 6.11 (2018), pp. 24–31.

[2] J. M. Selig. Introductory robotics. Vol. 5. Prentice hall London, 1992.

[3] I. David and G. Robles. “PID control dynamics of a Robotic arm manipulator with two
degrees of Freedom”. In: Control de Processos y Robotica (2012), pp. 3–7.

[4] C. Urrea, J. Kern, and J. Alvarado. “Design and Evaluation of a New Fuzzy Control Algo-
rithm Applied to a Manipulator Robot”. In: Applied Sciences 10.21 (2020). issn: 2076-3417.
url: https://www.mdpi.com/2076-3417/10/21/7482.

[5] C. M. Lim and T. Hiyama. “Application of fuzzy logic control to a manipulator”. In: IEEE
Transactions on Robotics and Automation 7.5 (1991), pp. 688–691.

[6] K. Lochan and B. K. Roy. “Control of two-link 2-DOF robot manipulator using fuzzy logic
techniques: a review”. In: Proceedings of Fourth International Conference on Soft Computing
for Problem Solving: SocProS 2014, Volume 1. Springer. 2014, pp. 499–511.

[7] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

9

https://www.mdpi.com/2076-3417/10/21/7482

A. Matlab Simulation

A.1. Dynamics

Listing 1: Source code for dynamics verification

1 syms theta_1(t) theta_2(t) m_1 m_2 l_1 l_2 g

2
3 % kinematics

4 x_1 = l_1 * cos(theta_1(t))

5 y_1 = l_1 * sin(theta_1(t))

6 x_2 = l_2 * cos(theta_1(t) + theta_2(t)) + x_1

7 y_2 = l_2 * sin(theta_1(t) + theta_2(t)) + y_1

8
9 % v_1^2

10 v_1_sq = diff(x_1, t)^2 + diff(y_1, t)^2

11
12 % v_2^2

13 v_2_sq = diff(x_2, t)^2 + diff(y_2, t)^2

14
15 % kinematics energy

16 K_E = 1/2 * (m_1 * v_1_sq + m_2 * v_2_sq)

17
18 % potential energy

19 P_E = m_1 * g * y_1 + m_2 * g * y_2

20
21 % Lagrangian equation

22 L = K_E - P_E

23
24 % Force

25 F_1 = diff(diff(L,diff(theta_1(t),t)), t) - diff(L, theta_1(t))

26 F_2 = diff(diff(L,diff(theta_2(t),t)), t) - diff(L, theta_2(t))

A.2. PID control

Listing 2: Source code for PID simulation
1 function pid()
2
3 % Define parameters
4 l1 = 1; % length of the first link
5 l2 = 1; % length of the second link
6 m1 = 1; % mass of the first link
7 m2 = 1; % mass of the second link
8 g = 9.81; % acceleration due to gravity
9

10

10 % Initial conditions
11 initial_theta = [- pi / 2, pi / 2];
12 desired_theta = [pi / 2, - pi / 2];
13
14 % PID gains for each link
15 Kp1 = 40;
16 Ki1 = 7;
17 Kd1 = 7;
18
19 Kp2 = 20;
20 Ki2 = 10;
21 Kd2 = 10;
22
23 % Simulation parameters
24 dt = 0.01; % time step
25 total_time = 10; % total simulation time
26
27 % Initialize variables
28 time = 0:dt:total_time;
29 num_steps = length(time);
30
31 theta = zeros(num_steps, 2);
32 theta(1, :) = initial_theta;
33 theta_err = zeros(num_steps, 2);
34 theta_dot = zeros(num_steps, 2);
35
36 % Initialize error variables for PID
37 error_integral1 = 0;
38 error_integral2 = 0;
39
40 for i = 1:num_steps
41 % Calculate dynamics
42 [M, C, G] = calculate_dynamics(theta(i, :), theta_dot(i, :), l1, l2, m1,

m2, g);
43
44 % Error calculation
45 error1 = desired_theta(1) - theta(i, 1);
46 error2 = desired_theta(2) - theta(i, 2);
47
48 % PID control law
49 u1 = Kp1 * error1 + Ki1 * error_integral1 + Kd1 * (0 - theta_dot(i, 1));
50 u2 = Kp2 * error2 + Ki2 * error_integral2 + Kd2 * (0 - theta_dot(i, 2));
51
52 % Update error integrals
53 error_integral1 = error_integral1 + error1 * dt;
54 error_integral2 = error_integral2 + error2 * dt;
55
56 % Control input (torque)
57 u = [u1; u2];
58
59 % Solve for accelerations

11

60 theta_ddot = M \ (u - C - G);
61
62 % Update velocities and positions using Euler integration
63 theta_dot(i+1, :) = theta_dot(i, :) + theta_ddot' * dt;
64 theta(i+1, :) = theta(i, :) + theta_dot(i+1, :) * dt;
65 theta_err(i+1, :) = [error1, error2];
66 end
67
68 % Plot results
69 figure;
70 plot(time(2:length(time)), rad2deg(theta_err(2:length(time), 1)), 'r', '

LineWidth', 2);
71 hold on;
72 plot(time(2:length(time)), rad2deg(theta_err(2:length(time), 2)), 'b', '

LineWidth', 2);
73 title('Joint Angles Error Over Time');
74 xlabel('Time (s)');
75 ylabel('Joint Angles (degrees)');
76 legend('\theta_1', '\theta_2');
77 grid on;
78
79 end
80
81 function [M, C, G] = calculate_dynamics(theta, theta_dot, l1, l2, m1, m2, g)
82 % Extract joint angles and velocities
83 theta1 = theta(1);
84 theta2 = theta(2);
85 theta1_dot = theta_dot(1);
86 theta2_dot = theta_dot(2);
87
88 % Calculate necessary trigonometric terms
89 c1 = cos(theta1);
90 c2 = cos(theta2);
91 s2 = sin(theta2);
92 c12 = cos(theta1 + theta2);
93 s12 = sin(theta1 + theta2);
94
95 % Mass matrix M
96 M = [m1 * l1^2 + m2 * (l1^2 + 2 * l1 * l2 * c2 + l2^2), m2 * (l1 * l2 * c2 +

l2^2);
97 m2 * (l1 * l2 * c2 + l2^2), m2 * l2^2];
98
99 % Coriolis and centrifugal matrix C

100 C = [-m2 * l1 * l2 * s2 * (2 * theta1_dot * theta2_dot + theta2_dot^2);
101 m2 * l1 * l2 * theta1_dot^2 * s2];
102
103 % Gravitational vector G
104 G = [(m1 + m2) * l1 * g * c1 + m2 * g * l2 * c12;
105 m2 * g * l2 * c12];
106 end

12

	Robot Specification
	Kinematics
	Dynamics
	Controller Design
	Fuzzy Logic Control
	Matlab Simulation
	Dynamics
	PID control

