
Devin Yeung A BNF grammar extension designed for string generation 1

A BNF grammar extension designed for string generation

Devin Yeung

Devin Yeung A BNF grammar extension designed for string generation 2

Agenda

Intro to BNF grammar

Basic Term & How reduce works

Identify the common pitfalls in BNF grammar

Extending the grammar

Extend the grammar with regular language

Extend the grammar with weights and invoke limits

Extend the grammar with typing and identifier tracking

Beyond the grammar extension

Explain the semantic analysis

Devin Yeung A BNF grammar extension designed for string generation 3

Why do we want a grammar extension for generation

How do we check the implementation of parser is conform to the BNF grammar?

We need a generator to generate strings from the grammar!

Furthermore, can we add more constraints to the generated string?

- Typing ?

- Generate more on the part we are interested in?

Devin Yeung A BNF grammar extension designed for string generation 4

Terminology

They are basically only 4 key terms in BNF grammar

<noun> ::= "pizza"

 | "hamburger"

 | "fried chicken"

We call the quoted string as "Terminal"

<sentence> ::= <subject> <verb> <object>

We call the bracket string as "Non-Terminal"

Called "Alternative"

The name of production

Devin Yeung A BNF grammar extension designed for string generation 5

BNF: Generation Perspective

String generation with BNF grammar is constructing a tree!

<sentence> ::= <subject> <verb> <object>

<subject> ::= "I" | "you" | "he" | "she"

<verb> ::= "like" | "love" | "hate"

<object> ::= "cats" | "dogs" | "books"

We call this step "reduce"

Devin Yeung A BNF grammar extension designed for string generation 6

Observation

BNF grammar is powerful in “describing” string

but not suitable for “generating” string.

Devin Yeung A BNF grammar extension designed for string generation 7

Pitfalls in BNF grammar

Assuming that <decl> can be reduced to terminals through multiple steps

The generation of recursive rules is hard to control

Consider the following rule:

<decls> ::= <decl>

 | <decls> <decl>

These trees are all valid according to the rule

What if the generator always
choose the 2nd alternative?

Infinite loops happens !

Devin Yeung A BNF grammar extension designed for string generation 8

Pitfalls in BNF grammar

In convention, the first line of BNF grammar is the start symbol

Some BNF rule may lead to infinite loop in generation

Consider the following rule:

 <E> ::= <D> | <F>;

 <C> ::= <D> ;

<D> ::= <C> ;

 <F> ::= <G> ;

 <G> ::= <F> | "Terminal" ;

If we choose <F> in generation, it seems we are in a loop, but we

can escape from <G> produce "Terminal"

However, if we choose <D> in generation, it will be a disaster!

Because it has no way out! It will loop forever

We call this situation "trap loop"

Devin Yeung A BNF grammar extension designed for string generation 9

Pitfalls in BNF grammar

The … is for representation only, it’s not a valid BNF grammar

BNF lacks maintainability (when expressing complex terminal)

Consider representing a identifier which starts with alphabets or underscore,

follow with alphabets, underscore or numbers

<alphabet> ::= "a" | "b" | … | "y" | "z" |

 "A" | "B" | … | "Y" | "Z"

<id> ::= <char0> | <id> <char1>

We use 5 rules just to define an identifier!

<digit> ::= "0" | "1" | … | "8" | "9"

<char0> ::= <alphabet> | "_"

<char1> ::= <alphabet> | "_" | <digit>

It produce an complex non-terminal (in tree perspective) instead of a terminal

Devin Yeung A BNF grammar extension designed for string generation 10

Design Goal of BNF extension & generator

- The grammar should be friendly to generation (opposed to parser)

- The grammar should be ergonomic to used

- Any invalid patterns should be catch as early as possible with human readable

error message

- Extend the semantic of BNF grammar (to generate more complex string)

Note that we extend the semantic of the grammar, but not the computation power of the grammar.

The computation power of the extended grammar is still context-free

Devin Yeung A BNF grammar extension designed for string generation 11

Define the BNF grammar

<str> is quoted string. Since it’s too complicated to represent in BNF, we didn’t put it on the presentation.

BNF grammar is self-described

<Grammar> ::= <Rule> | <Grammar> <Rule> ; <Rule1> <Rule2> … <Rulen>

<Rule> ::= "<" <id> ">" "::=" <Alts> ";" ;

<Alts> ::= <Alt> | <Alts> <Alt> ; <Alt1> <Alt2> … <Altn>

<Alt> ::= <Symbols> ;

<Symbols> ::= <Symbol> | <Symbols <Symbol> ; <Symbol1> <Symbol2> … <Symboln>

<Symbol> ::= <str> | <NonTerm> ;

<NonTerm> ::= "<" <id> ">" ;

Devin Yeung A BNF grammar extension designed for string generation 12

Extending BNF grammar

Enable BNF grammar with the power of regular language

Add a new regex variant to the symbol rule

<Symbol> ::= "re" "(" <str> ")"

 | <str> | <NonTerm>

Use a dedicated parser to parse this string as

a regular expression (syntax tree)

Regex almost acts as same as non-terminal, but

with much powerful pattern matching power

The <id> can be represent equivalently using regex

<id> ::= re("[a-zA-Z_][a-zA-Z0-9_]*")

Much neat and compact this time!

Devin Yeung A BNF grammar extension designed for string generation 13

Extending BNF grammar

How to deal with regex in generation?

The raw regex string will be converted to HIR for further generation

Empty | Flags | Literal | Dot | Assertion

| ClassUnicode | ClassPerl | ClassBracketed

| Repetition | Group | Alternation | Concat

Syntax Tree
(Ast)

High Level
Representation

Empty | Literal | Repetition |

Class | Concat | Alternation

Raw String
Parser Transformer

Generation

Devin Yeung A BNF grammar extension designed for string generation 14

Extending BNF grammar

Introduce Invoke Limit to solve the uncontrolled recursive generation

We use a <Limit> term to indicate the invoke limit of a certain alternative

<Alt> ::= <Symbols>

 | <Symbols> <Limit>

<Limit> ::= "{" <num> "}" | "{" <num> "," "}"

 | "{" <num> "," <num> "}"

{ 10 } means it must be invoked at exact 10 times

{ 2, 5 } means it must be invoked at least 2 times

(inclusive) and at most 5 times (inclusive)

{ 5, } means it must be invoked at least 5 times

(inclusive), but there’s not upper limit.

Devin Yeung A BNF grammar extension designed for string generation 15

Extending BNF grammar

Why it solves the problem?

We use a <Limit> term to indicate the invoke limit of a certain alternative

<Expr> ::= <Expr> "+" <Expr> {3, 5}

 | <Expr> "*" <Expr> {2, 10}

 | <num>

If this alternative reaches the invoke limit

fall back to other alternative that does not reach the

invoke limit

finally fall back to those alternatives that do not have upper invoke limit

Devin Yeung A BNF grammar extension designed for string generation 16

Extending BNF grammar

Enhancement: Weighted Alternatives

We use a <Weight> term to distribute different weights on different alternatives

<Alt> ::= <Symbols>

 | <num> <Alt> <Symbols> <Limit>

The weight of this Alternative

Note that the weighted alternative is fully compatible with invoke limit we introduced before.

We does not show the full-grammar for presentation purpose.

<Expr> ::= 1 <Expr> "+" <Expr>

 | 1 <Expr> "*" <Expr>

 | 10 <num>

In this case, we have larger chance to choose the <num> alternative

But we still got a chance to choose the first two alts because of RNG

Devin Yeung A BNF grammar extension designed for string generation 17

Extending BNF grammar

Increase the expressiveness: Introduce typing

Each Production Name and Non-Terminal can be typed

<Rule> ::= "<" <id> ">" "::=" <Alts> ";"

 | "<" <id> <Typed> ">" "::=" <Alts> ";"

<NonTerm> ::= "<" <id> ">" | "<" <id> <Typed> ">"

<Typed> ::= ":" <str>

The behavior of generator:

- A Non-Terminal without type can be reduced to

symbol with any type or symbol without type

- A Non-Terminal with type will

1. Try to reduced to the symbol with same type

2. If no typed symbol matched, select a symbol

without type as fallback

3. If nothing left, panic!

Constraints that introduced by weight and invoke limit

also counts. Precedence: Type > Limit > Weight

Devin Yeung A BNF grammar extension designed for string generation 18

Extending BNF grammar

Real-world example from COMP3043

<Expr0> ::= "{" <Id> ":" <Predicate> "}"

 | "(" <Expr> ")" | <Num> | <Id> ;

<Expr1> ::= <Expr0>

 | <Expr1> "I" <Expr0>

 | <Expr1> "*" <Expr0> ;

<Expr> ::= <Expr1>

 | <Expr> "U" <Expr1>

 | <Expr> "+" <Expr1>

 | <Expr> "-" <Expr1> ;

Devin Yeung A BNF grammar extension designed for string generation 19

Extending BNF grammar

Real-world example from COMP3043

<Expr0> ::= "{" <Id> ":" <Predicate> "}"

 | "(" <Expr> ")" | <Num> | <Id> ;

<Expr1> ::= <Expr0>

 | <Expr1> "I" <Expr0>

 | <Expr1> "*" <Expr0> ;

<Expr0: "set"> ::= "{" <Id> ":" <Predicate> "}" ;

<Expr0: "int"> ::= "(" <Expr: "int"> ")"

 | <Num> | <Id> ;

<Expr1: "int"> ::= <Expr0: "int">

 | <Expr1: "int"> "*" <Expr0: "int"> ;

<Expr1: "set"> ::= <Expr0: "set">

 | <Expr1: "set"> "U" <Expr0: "set"> ;

Devin Yeung A BNF grammar extension designed for string generation 20

Extending BNF grammar

Properties of Typed BNF grammar

The entire typing feature are opt-in and progressive, which means:

- You can use other parts of the extension without typing, vice versa, you can also just

use typing and don’t use weighted alternative or invoke limits.

- Typed BNF generator does not required everything to be typed to make it works.

Instead, how much you typed, how much it can guarantee. (Partially typed)

Partially typed is extremely useful, because in our experiment on Set-Algebra language,

we only need to type a small proportion of grammar, then everything is typed !

Devin Yeung A BNF grammar extension designed for string generation 21

Last mile to perfection: undefined variable

When variable comes in, everything becomes complicated!

<Prog> ::= <Decl> "calc" <Expr>

<Decls> ::= <Decl> | <Decls> <Decl>

<Decl> ::= "let" <id> "=" <num> "."

<Expr> ::= <Expr> "+" <Expr>

 | <Expr> "*" <Expr>

 | <num> | <id>

<id> ::= re("[a-zA-Z]*")

let x = 1. let y = 2. calc z + 3

Oh! Variable "Z" is undefined! 🤔
Usage of variable needs longer "context"

Devin Yeung A BNF grammar extension designed for string generation 22

Last mile to perfection: undefined variable

Introduce "Action" to solve complex context related dependencies

<Action> ::= "ref" "(" <str> ")"

 | "decl" "(" <str> ")"

<NonTerm> ::= "<" <id> ">"

 | "<" <id> <Typed> ">"

 | "<" <id> <Action> ">"

"decl" action will insert an identifier with type t

into the symbol table

"ref" action will randomly select an identifier

with type t from the symbol table

These represent types

Devin Yeung A BNF grammar extension designed for string generation 23

Last mile to perfection: undefined variable

Introduce "Action" to solve complex context related dependencies

<Decl> ::= "let" <id: decl("int")> "=" <num> "."

<Expr> ::= <id: ref("int")>

<id> ::= re("[a-zA-Z]*")

When reducing <id>, the generator will use

re("[a-zA-Z]*") to generate a random string s.

Then, insert s to the symbol table with type int

and symbol name id

When reducing <id>, the generator will retrieve symbol

with type int and symbol name id from the table
Looks good! But do we actually solve the problem? 🤔

Devin Yeung A BNF grammar extension designed for string generation 24

Last mile to perfection: undefined variable

What’s the problem in this example?

<Decl> ::= "let" <id: decl("int")> "=" <Expr>"."

<Expr> ::= <id: ref("int")>

<id> ::= re("[a-zA-Z]*")

Cyclic Reference may happen!

If we reduce from right to left, it fine

But if we reduce from left to right? It may produce:

let x = x. calc x

Because <id: decl(..)> goes before the reduction of <Expr>

<Action> ::= "ref" "(" <str> ")"

 | "decl" "(" <str> ")"

 | "decl_defer" "(" <str> ")"

The semantic we want:

The declaration of variable happens at the end of the

reduction of the entire production

Devin Yeung A BNF grammar extension designed for string generation 25

Finalized BNF grammar

<Grammar> ::= <Rule> | <Grammar> <Rule> ;

<Rule> ::= "<" <id> ">" "::=" <Alts> ";"

 | "<" <id> <Typed> ">" "::=" <Alts> ";" ;

<Alts> ::= <Alt> | <Alts> <Alt> ;

<Alt> ::= <Symbols> | <num> <Symbols>

 | <Symbols> <Limit>

 | <num> <Symbols> <Limit> ;

<Symbols> ::= <Symbol> | < Symbols> <Symbol> ;

<Symbol> ::= <str> | <NonTerm> | <Regex> ;

<NonTerm> ::= "<" <id> ">" | "<" <id> <Suffix> ">" ;

<Regex> ::= "re" "(" <str> ")" ;

<Limit> ::= "{" <num> "}" | "{" <num> "," "}"

 | "{" <num> "," <num> "}" ;

<Suffix> ::= <Typed> | ":" <Action> ;

<Typed> ::= ":" <str> ;

<Action> ::= "ref" "(" <str> ")"

 | "decl" "(" <str> ")"

 | "decl_defer" "(" <str> ")" ;

Devin Yeung A BNF grammar extension designed for string generation 26

Beyond the grammar and generation

To achieve the goal of making it ergonomic to user, we make great effort in semantic analysis

This is the real input from our tool! We use ASCII Art to maximize the readability of error message

Devin Yeung A BNF grammar extension designed for string generation 27

Beyond the grammar and generation

Solve the problem of "trap loop"

 <E> ::= <D> | <F>;

 <C> ::= <D> ;

<D> ::= <C> ;

 <F> ::= <G> ;

 <G> ::= <F> | "Terminal" ;

BNF grammar, in fact, is a directed graph

Each non-terminal becomes a vertex

Each production rule creates edges between vertices

Devin Yeung A BNF grammar extension designed for string generation 28

Beyond the grammar and generation

Steps to identify the trap loop

1. Find the strongly connected components in the

graph

2. For each SCC, check if:

a) It contains more than one vertex (forms a cycle)

b) Has no escape to a terminal

{C, D} is a trap loop because:
❏ Forms a cycle (C → D → C)
❏ Has no path to a terminal

{F, G} is not a trap loop because:
❏ Although it forms a cycle
❏ It has an escape to "Terminal" through G

Devin Yeung A BNF grammar extension designed for string generation 29

Beyond the grammar and generation

The error message is clean, neat and human-readable

This is the real input from our tool! We use ASCII Art to maximize the readability of error message

Devin Yeung A BNF grammar extension designed for string generation 30

Beyond the grammar and generation

A List of currently supported semantic analysis:

Each of these problems may lead to serious panic in string generation!

❏ Invalid invoke limit range detection

❏ Undefined rule detection (via DFS)

❏ Duplicated rule detection

❏ Unreachable rule detection (via DFS)

❏ Dead loop detection (which avoid the possible infinite loop in the generation)

Design philosophy: Catch errors as earlier as possible, instead of panic in runtime

Devin Yeung A BNF grammar extension designed for string generation 31

🏆 Trophies

- The tool has been adopted by COMP3043 Compiler Construction to generate

parser / typechecker test cases in its final project.

- The tool is public available on Github under MIT License. We hear from communities!

https://github.com/Devin-Yeung/bnfgen

Devin Yeung A BNF grammar extension designed for string generation 32

Thank you for listening

